Dear Sir/Madam,

re: CONSTRUCTION NOISE AND VIBRATION MANAGEMENT SUB PLAN

Yours sincerely,

HIBBS & ASSOCIATES PTY LTD
Calvin Dunn
Acoustician
Toby Dudman
Principal Acoustician

TAYLOR GROUP PTY LTD

CONSTRUCTION NOISE AND VIBRATION MANAGEMENT SUB PLAN

REFERENCE NO. S11163-R01-CNVMSP-A1

SYDNEY OPERA HOUSE WESTERN RENEWAL PROJECT | 11 FEBRUARY 2020
Construction Noise and Vibration Management Sub Plan
Sydney Opera House, Bennelong Point, NSW 2000
Prepared for

Taylor Group Pty Ltd
Level 13, 157 Walker Street, North Sydney, NSW 2060
by

HIBBS & ASSOCIATES PTY LTD
Suite B, 255 Rawson Street,
Auburn NSW 2144,
P.O. Box 4266,
Homebush NSW 2140

www.hibbs.com.au

Telephone: (02) 9746 3244

Copyright © Hibbs & Associates Pty Ltd 2020
Our Reference: S11163-R01-CNVMSP-A1

Prepared by:

Calvin Dunn
Acoustician

Toby Dudman
Principal Acoustician

Reviewed by:

Toby Dudman
Principal Acoustician

Date: 11 February 2020
Executive Summary

Condition B34 of the development consent for Sydney Opera House Trust's application for 'Upgrade to the Concert Hall and new Creative Learning Centre at the Sydney Opera House' (SSD 8663) requires a Construction Noise and Vibration Management Sub-Plan (CNVMSP). The CNVMSP addresses all requirements of, and complies with, Consent Condition B34.

The predicted noise immissions are at least 30 dB and 12 dB below the warning NMLs for Kirribilli and Bennelong Apartments, respectively. Based on this, no additional mitigation is necessary beyond the good practice recommendations to minimise noise contained within the ICNG, Taylor’s management plans and the relevant recommendations in SOH's Draft CMP and Arup's NIA.
TABLE OF CONTENTS

Executive Summary 3
1. Introduction 5
2. Background 7
 2.1 Interim Construction Noise Guideline 7
 2.2 Potentially Affected Sensitive Receivers 8
 2.3 Noise Management Levels 8
3. Sources 10
4. Mitigation 12
 4.1 Work practices to minimise noise 12
 4.2 Reversing signals 12
 4.3 Recommended mitigation 12
5. Letterbox drop 14
6. Monitoring programme 15
Appendix A Source data 16
Appendix B Noise Impacts 50

LIST OF FIGURES

Figure 2.1: Potentially Affected Sensitive Receivers 9
Figure 6.1: Noise logger location 15

Figure B.1: Noise Contours - Demolition 51
Figure B.2: Noise Contours – Concreting 51
Figure B.3: Noise Contours – Internal Works 52

LIST OF TABLES

Table 1.1: Index to condition requirements 5
Table 2.1: Project Noise Management Levels 8
Table 3.1: Noise Sources 10
Table 3.2: Predicted noise impacts 11
1. Introduction

Condition B34 of the development consent for Sydney Opera House Trust’s application for ‘Upgrade to the Concert Hall and new Creative Learning Centre at the Sydney Opera House’ (SSD 8663) \(^1\) requires a Construction Noise and Vibration Management Sub-Plan (CNVMSP). Condition B34 states:

CONSTRUCTION NOISE AND VIBRATION MANAGEMENT PLAN

B34. Prior to the commencement of work, a Construction Noise and Vibration Management Plan (CNVMP) prepared by a suitably qualified person shall be submitted to the Certifying Authority. The CNVMP shall address (but not be limited to):

(a) the EPA’s Interim Construction Noise Guideline;

(b) identify nearby sensitive receivers and land uses;

(c) identify the noise management levels for the project;

(d) identify the construction methodology and equipment to be used and the key sources of noise and vibration;

(e) details of all reasonable and feasible management and mitigation measures to be implemented to minimise construction noise and vibration, including consideration of the practicability of the use of audible movement alarms of a type that would minimise noise impacts on surrounding sensitive receivers, without compromising safety;

(f) be consistent with and incorporate all relevant recommendations and noise and vibration mitigation measures outlined in the ‘Noise Impact Assessment’ Rev B, prepared by Arup, dated 20 December 2018 and ‘Draft Construction Management Plan – Sydney Opera House Concert Hall and Creative Learning Centre DA3 – SSD8663’ Version 3.1 prepared by the Sydney Opera House Trust, dated August 2018;

(g) ensure all potentially impacted sensitive receivers are informed by letterbox drops prior to the commencement of construction of the nature of works to be carried out, the expected noise levels and duration, as well as contact details for a construction community liaison officer; and

(h) include a suitable proactive construction noise and vibration monitoring program which aims to ensure the construction noise and vibration criteria in this consent are not exceeded.

The CNVMSP addresses all requirements of, and complies with, Consent Condition B34.

Table 1.1: Index to condition requirements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Section in CNVMSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>B34(a)</td>
<td>2.1</td>
</tr>
<tr>
<td>B34(b)</td>
<td>2.2</td>
</tr>
<tr>
<td>B34(c)</td>
<td>2.3</td>
</tr>
<tr>
<td>B34(d)</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^1\) NSW Government Department of Planning, Industry and Environment, 2019, *Opera House Concert Hall & Creative Learning Centre (SSD 8663), Draft Development Consent*
<table>
<thead>
<tr>
<th>Condition</th>
<th>Section in CNVMSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>B34(e)</td>
<td>4</td>
</tr>
<tr>
<td>B34(f)</td>
<td>4</td>
</tr>
<tr>
<td>B34(g)</td>
<td>5</td>
</tr>
<tr>
<td>B34(h)</td>
<td>6</td>
</tr>
</tbody>
</table>
2. Background

2.1 Interim Construction Noise Guideline

The stated aim of the NSW Interim Construction Noise Guideline \(^2\) (ICNG) is

to provide guidance on managing construction works to minimise noise with an emphasis on communication and cooperation with all involved in, or affected by, construction noise.

The ICNG states its’ objectives are to:

- Promote a clear understanding of ways to identify and minimise noise from construction works.
- Focus on applying all ‘feasible’ and ‘reasonable’ work practices to minimise construction noise impacts.
- Encourage construction to be undertaken only during the recommended standard hours unless approval is given for works that cannot be undertaken during these hours.
- Streamline the assessment and approval stages and reduce time spent dealing with complaints at the project implementation stage.
- Provide flexibility in selecting site-specific feasible and reasonable work practices in order to minimise noise impacts.

The ICNG states what actions the construction site should take at various levels of impact. In general, the ICNG opposes construction work outside normal daytime working hours. The noise impact is likely to be different at different times of the day, days of the week and during different phases of construction work. In addition, noise emissions from a construction site may vary significantly from one moment to the next. Psychological factors heavily influence human reaction to environmental noise. Consequently, NIAs have a high level of uncertainty. The ICNG emphasises community communication and feasible and reasonable work practices to minimise noise impacts over numerical noise limits.

The ICNG provides qualitative and quantitative assessment methods. The quantitative method determines Noise Management Levels (NMLs) relative to the Rating Background Levels (RBLs) at residences. The ICNG states:

Where noise from construction works is above the ‘noise affected’ levels presented below, the proponent should apply all feasible and reasonable work practices to minimise noise. The proponent should also inform potentially affected parties of the activities to be carried out, the expected noise impacts and duration.

The ICNG provide the following explanations of Feasible and Reasonable in the context of the work practices required to minimise noise levels above the NMLs.

Feasible

A work practice or abatement measure is feasible if it is capable of being put into practice or of being engineered and is practical to build given project constraints such as safety and maintenance requirements.

\(^2\) New South Wales & Department of Environment and Climate Change (2009) \textit{Interim construction noise guideline}, Dept. of Environment and Climate Change, Sydney N.S.W.
Reasonable

Selecting reasonable measures from those that are feasible involves making a judgment to determine whether the overall noise benefits outweigh the overall adverse social, economic and environmental effects, including the cost of the measure. To make such a judgement, consideration may be given to:

- **Noise level impacts**
- **Noise mitigation benefits**
- **Cost effectiveness of noise mitigation**
- **Community views**

2.2 Potentially Affected Sensitive Receivers

The nearest Potentially Affected Sensitive Receivers (PASR) are residences to the south (Bennelong Apartments at East Circular Quay) and to the north in the suburb of Kirribilli. Bennelong Apartments is about 260 m from the concert hall and partly screened by the southern sections of the Sydney Opera House. The residents of Bennelong Apartments are the only PASR that need to be included in the letterbox drop (refer section 5). The nearest residences in Kirribilli to the site are on the southern waterfront and about 550 m distant, across the harbour. Figure 2.1 shows these locations on an aerial photograph.

2.3 Noise Management Levels

SOH's Noise Impact Assessment (NIA) \(^3\) conducted noise surveys at the nearest NSRs and calculated NMLs from these in accordance with the ICNG. The Construction Management Plan sets out work patterns as:

- **1030 hours to 1800 hours** – General construction/no major noise generating activities
- **1800 hours to 2330 hours** – Planning and quiet activities which are compatible with the live performances occurring in other venues within the site
- **2330 hours to 1030 hours** – Works which will otherwise be disruptive to Opera House operations but not audible outside of the building

Based on this, only the NMLs for standard daytime working hours apply.

<table>
<thead>
<tr>
<th>PASR</th>
<th>Kirribilli</th>
<th>Bennelong Apartments</th>
<th>Potts Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning level, (L_{Aeq,15m}) (dB)</td>
<td>61</td>
<td>65</td>
<td>58</td>
</tr>
<tr>
<td>Maximum Level, (L_{Aeq,15m}) (dB)</td>
<td>64</td>
<td>68</td>
<td>61</td>
</tr>
</tbody>
</table>

\(^3\) Arup (2018) *Sydney Opera House, Building Renewal Noise Impact Assessment for DA3 - SSD 8663 R07 Issue (Rev A) | 15 May 2018*
Figure 2.1: Potentially Affected Sensitive Receivers
3. Sources

Appendix A contains a description of the construction methodology and schedule. Table 3.1 lists the key noise sources. The source noise levels are expressed as sound power levels for external sources and overall average diffuse internal sound pressure levels for internal activities. The source terms are cumulative and assume concurrent activities throughout the building. They assume tool use throughout the 15-minute assessment period. Therefore, they represent a commonly occurring upper emission level.

There are no sources of vibration likely to give rise to adverse vibration impacts offsite. While the concrete breakers generate high vibration at the point of impact, these levels will attenuate rapidly with distance due to the high mass foundations and substructures between the source and receptors.

Table 3.1: Noise Sources

<table>
<thead>
<tr>
<th>Activity</th>
<th>Construction Equipment</th>
<th>Source Noise Level</th>
<th>Index (Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External works</td>
<td>Hand tools to remove façade elements</td>
<td>98</td>
<td>L_{AW} (dB)</td>
</tr>
<tr>
<td></td>
<td>Occasional mobile crane and forklifts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal demolition</td>
<td>Demolition saw</td>
<td>96</td>
<td>$L_{Ap,In}$ (dB)</td>
</tr>
<tr>
<td></td>
<td>Core drill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete breakers (handheld)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small excavators/bobcats/forklifts (electric).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bobcat with nibbler to remove staging</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work platforms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal works</td>
<td>Hand tools</td>
<td>86</td>
<td>$L_{Ap,In}$ (dB)</td>
</tr>
<tr>
<td></td>
<td>Small excavators/bobcats</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work platforms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concreting (internal plant)</td>
<td>Vibrators</td>
<td>89</td>
<td>$L_{Ap,In}$ (dB)</td>
</tr>
<tr>
<td>Concreting (external plant)</td>
<td>Concrete trucks</td>
<td>107</td>
<td>L_{AW} (dB)</td>
</tr>
<tr>
<td></td>
<td>Concrete pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste handling/ removal</td>
<td>Funicular hoists and waste chutes</td>
<td>96</td>
<td>L_{AW} (dB)</td>
</tr>
<tr>
<td>Vehicles</td>
<td>Materials and waste trucks</td>
<td>109</td>
<td>L_{AW} (dB)</td>
</tr>
</tbody>
</table>

Key to Table 3.1:

L_{AW} Sound Power Level (point source)

$L_{Ap,In}$ Internal average diffuse sound pressure level

We have predicted the noise impacts at the nearest NSRs using the iNoise software package. This implements ISO 9613-2 supplemented by the meteorological correction terms contained within CONCAWE report 4/81. The model assumes 'hard' ground for all surfaces except for the Royal Botanical Gardens, which is modelled as 'soft' ground. The model assumes Pasquill Stability Class B, which is common for a sunny daytime with a mild breeze, and the prevailing wind direction (NW) for Sydney.

Table 3.2 lists the predicted noise impact separately for the works at the site (internal and external) and a delivery vehicle accessing the site from Macquarie Street. With reference to Table 2.1, the predicted noise immissions are at least 30 dB and 12 dB below the warning NMLs for Kirribilli and Bennelong Apartments, respectively.

Table 3.2: Predicted noise impacts

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Source</th>
<th>Noise Immission, $L_{Aeq,15m}$ (dB)</th>
<th>Noise Immission, $L_{Aeq,15m}$ (dB)</th>
<th>Noise Immission, $L_{Aeq,15m}$ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kirribilli</td>
<td>Bennelong (4th floor)</td>
<td>Bennelong (9th floor)</td>
</tr>
<tr>
<td>Demolition</td>
<td>Delivery</td>
<td>9</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Building</td>
<td>31</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>Concreting</td>
<td>Delivery</td>
<td>9</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Building</td>
<td>26</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>Internal works</td>
<td>Delivery</td>
<td>9</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Building</td>
<td>19</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>51</td>
<td>49</td>
</tr>
</tbody>
</table>
4. Mitigation

4.1 Work practices to minimise noise

As stated in section 2.1, The ICNG states:

Where noise from construction works is above the ‘noise affected’ levels presented below, the proponent should apply all feasible and reasonable work practices to minimise noise. The proponent should also inform potentially affected parties of the activities to be carried out, the expected noise impacts and duration.

The predicted noise immissions are at least 30 dB and 12 dB below the warning NMLs for Kirribilli and Bennelong Apartments, respectively. Based on this, no additional mitigation is necessary beyond the good practice recommendations to minimise noise contained within the ICNG, Taylor’s management plans and the relevant recommendations in SOH's Draft CMP and Arup’s NIA.

4.2 Reversing signals

It would be practicable for Taylor to require the onsite plant and equipment to have suitable broadband movement alarms that can minimise noise impacts on surrounding sensitive receivers without compromising safety. We expect that this would minimise the noise impact to NSRs. It is not practicable for Taylor to require all vehicles attending site temporarily, particularly delivery and waste vehicles, to have broadband reversing signals because they would have little control over these vehicles.

4.3 Recommended mitigation

The following recommendations include those contained within:

- Taylor’s Noise Management Procedure (NMP) 5
- Taylor’s Construction Management Plan (CMP) 6
- Sydney Opera House Trust’s Draft Construction Management Plan (DCMP) 7
- Arup’s Noise Impact Assessment (NIA)

General

- i. Where possible, position and orientate noisy plant and equipment away from sensitive receivers.
- ii. Ensure all construction activities are undertaken during approved working hours
- iii. Prevent vehicles and plant queuing and idling outside the site prior to the morning start time.
- iv. Prevent vehicles and plant idling when not in use.

Complaints

6 Taylor Construction Group Pty Ltd (2019) *Construction Management Plan – Western Renewal Project at Sydney Opera House Bennelong Point*
7 Sydney Opera House, 2018, *Concert Hall and Creative Learning Centre, DA3 – SSD8663, Draft Construction Management Plan*
v. If a noise or vibration-related complaint is received, report and investigate in accordance with the incident reporting and investigation procedure.

vi. Feedback on resolution of a complaint should be provided to the complainant where requested.

Temporary opening in the façade for access to the Concert Hall

vii. Provide a solid timber or steel door to close off the temporary opening in the façade for access to the Concert Hall.

viii. Provide door with gasket seals around the perimeter and a mechanism to hold the door closed

ix. Ensure that the door is kept closed except when needing to be open for access for plant and materials.

Reversing signals

x. Onsite plant and equipment in long-term use to have suitable broadband movement alarms.
5. **Letterbox drop**

SOH will undertake the required letterbox drop. The residents of Bennelong Apartments at East Circular Quay will receive the letterbox drop.

- Contact telephone number is 1300 382 692
- Email address is constructionfeedback@sydneyoperahouse.com
6. Monitoring programme

SOHT’s Draft CMP states:

A noise logger will be installed and maintained which can be interrogated remotely by SOHT staff as well as SOHT’s Contractor. The logger will also be required to automatically send a text message to SOHT’s Contractor’s representative on site once the ‘warning’ threshold is breached. The SOHT representative on site during the works will also be copied in with the warning texts.

This provides a suitable proactive construction noise and vibration monitoring program. Taylor should designate an appropriate manager who will interrogate the logger at the start of each change in work schedule likely to change the overall site emissions materially and weekly during the noisiest works. As a minimum, this should be at the commencement of and during demolition and concreting works.

The noise logger should be installed at the PASR expected to have the highest noise immission level. That is at the northern façade of Bennelong Apartments. The noise logger should be installed on a balcony on, or as close as possible to the fourth floor. This is the same location as ‘Location 1’ of Arup’s background noise monitoring. Figure 6.1 shows that location and is reproduced from Arup’s report (Figure 2).

![Figure 6.1: Noise logger location](image)

Figure 6.1: Noise logger location
Appendix A Source data

Construction methodology and schedule
Sydney Opera House - Western Renewal Project
Site Establishment – External Materials Handling Strategy

Western Podium
Taylor Site Enclosure (Fixed A Class Hoardings & Precast Protection)

Low Promenade
Taylor Site Enclosure (Fixed A Class Hoardings & Precast Protection)

Basement 6
Loading Dock Access
10AM – 5PM & MIDNIGHT – 5AM

Podcast Access
6AM – 7AM
All Deliveries To Be Fully Escorts Across Reservoir Area at Night

Taylor Group Pty Ltd
Reference No. S11163-R01-CNVMSP-A1
Sydney Opera House Western Renewal Project: Construction Noise and Vibration Management Sub Plan

Hibbs & Associates Pty Ltd © 2020
Page 19 of 53
Sydney Opera House - Western Renewal Project
Site Hoarding Lines & Worker Movements - Ground Floor including Creative Learning Centre
Sydney Opera House - Western Renewal Project
Site Hoarding Lines & Worker Movements – Level 1
Sydney Opera House - Western Renewal Project

Site Hoarding Lines & Worker Movements - Level 2
Sydney Opera House - Western Renewal Project
OverStage Works – Lower Truss Strengthening Sequence

1. Install Roof Truss Bracing
2. Local Demolition of Static Acoustic Skin
3. Truss Bracing
4. Knee Strengthening Works

Note: Critical Path to Clear During Lower Truss Strengthening Works. Opposite Pinnacle Hoist to remain Operational.
Western Strengthening to be completed prior to commencing Eastern Strengthening to ensure Pinnacle Hoist Access to the Overstage Plantroom Areas.
Sydney Opera House - Western Renewal Project
OverStage Works – Upper Plantroom structure Sequence – Phase 1

West Funicular Hoist to Close During West Wing Plantroom Installation Works.
Eastern Funicular Hoist to Remain Operational.
Western Wing Plantroom to be Completed Prior to Commencing Eastern Strengthening to ensure Funicular Hoist Access to the Over-stage Plantroom Area.
Sydney Opera House - Western Renewal Project
OverStage Works – Upper Plantroom structure Sequence – Phase 3
Sydney Opera House - Western Renewal Project
OverStage Works – Plantroom Construction sequence – Phase 3

II. Install low level ducts, fine spray ducts as required.
Sydney Opera House – Western Renewal Project

OverStage Works – Cannon port Sequence – East

1. Zone 6 Cannon Port Steel
2. Zone 7 Cannon Port Steel
3. Zone 8 Cannon Port Steel
4. Zone 4 Cannon Port Steel
5. Zone 3 Cannon Port Steel
6. Zones 182 Cannon Port Steel
Sydney Opera House - Western Renewal Project
Main Concert Hall - Stage Demolition - Phase 2 - Truncations

4. The Studio closed & fully backproped with birdcage scaffold. Timber floor to be removed to allow birdcage to launch from structural slab level.

5. Stage Slab to be fully Propped & Decked Out 300mm below slab in rehearsal room.

6. Local Exposure & truncation of FF beams at numerous locations. Sequence to be developed with Temporary Works Engineer.
Sydney Opera House - Western Renewal Project
Main Concert Hall - Stage Demolition - Phase 3 - Slab Demolition

7. Specialised small demolition machinery to be utilised during demolition. Demolition below machinery working back on itself.

5. Stage Slab to be fully propped & Decked Out 30mm below slab in rehearsal room. Spoil to be removed from top of the deck at stage level & removed via the lift.

4. The Studio closed & fully backpropped with birdcage scaffold. Timber floor to be removed to allow bracing to launch from structural slab level.
6. Stage Construction to follow demolition. Major concrete pour planning to be developed in detail with local concrete technologies to ensure batching, pumping, slump & suitability with the design mix noting the low shrinkage requirements.

4. Studio closed & fully backproped with birdcage scaffold. Timber floor to be removed to allow birdcage to launch from structural slab level.
Sydney Opera House - Western Renewal Project
DDA Upgrades - West Lift Sequence – Level 1

1. Install GM K Braces
2. Install Level 1 Propping & Structural Steel Pth
3. Pour LT Walls & LT Transfer Beams
1. Install Level 2 Propping, Remove Parapet & demolish Stair

2. PAR Stairs & Walls in Single Pour
Sydney Opera House - Western Renewal Project

DDA Upgrades - West Lift Sequence – Level 3

Column Works Independent:
1. Proping
2. Demolish Concrete Column
3. Install Steel Column
4. FRC Concrete Encasement

1. Install Temporary Proping, remove Precast & demolish 1st flr
2. FRC Stairs
Plantroom 17 Works to Following Completion of Zone C

1. Zone C
 - Temporary Props
 - Demolish Wall
 - FRP Concrete
<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>Duration</th>
<th>Actual Level of Effort</th>
<th>Remaining Work</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A</td>
<td>01-Mar-19</td>
<td>01-Mar-19</td>
<td>00 days</td>
<td>Critical Remaining Work</td>
<td>Actual Work</td>
<td>Summary</td>
</tr>
<tr>
<td>2. B</td>
<td>01-Mar-19</td>
<td>01-Mar-19</td>
<td>00 days</td>
<td>Critical Remaining Work</td>
<td>Actual Work</td>
<td>Summary</td>
</tr>
<tr>
<td>3. C</td>
<td>01-Mar-19</td>
<td>01-Mar-19</td>
<td>00 days</td>
<td>Critical Remaining Work</td>
<td>Actual Work</td>
<td>Summary</td>
</tr>
</tbody>
</table>

SYDNEY OPERA HOUSE

WESTERN RENEWAL PROJECT

TAYLOR PRECONSTRUCTION SUMMARY PROGRAMME - REV 16 - 27DEC19

Hibbs & Associates © 2020
SYDNEY OPERA HOUSE
WESTERN RENEWAL PROJECT

TAYLOR PRECONSTRUCTION SUMMARY PROGRAMME - REV 16 - 27DEC19

<table>
<thead>
<tr>
<th>Code</th>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11163-A1</td>
<td>Abutment Piers Installation</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
<tr>
<td>S11163-B1</td>
<td>Catenary Piers Installation</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
<tr>
<td>S11163-C1</td>
<td>Balanced Bay</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
<tr>
<td>S11163-D1</td>
<td>Main Support</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
<tr>
<td>S11163-E1</td>
<td>Tunnel Opening</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
<tr>
<td>S11163-F1</td>
<td>Tunnel Closure</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Note:
- The plan assumes dual piling heads, as stated in the notes section.

Creative - Link Stage Construction

<table>
<thead>
<tr>
<th>Code</th>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11163-G1</td>
<td>Creative - Link Stage Construction</td>
<td>01 Jan 20</td>
<td>31 Dec 20</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Notes:
- The creative work is subject to design changes and approvals.
- The link stage construction is expected to be completed by 31 Dec 2020.

Programme Assumes Dual Piling Heads

Planner: EB
Appendix B Noise Impacts

Contour maps of predicted noise levels
Figure B.1: Noise Contours - Demolition

Figure B.2: Noise Contours – Concreting
Figure B.3: Noise Contours – Internal Works