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Measuring echoes 

Going to the Sydney Opera House and watching a live performance, perhaps from an opera or 

orchestra, is a very special experience. It does not matter how many times you may hear a piece of 

music through your headphones or at home in your living room; listening to that same song being played 

in your presence sounds fundamentally different. Why is this the case? 

 

There are many contributing factors, but one of the most significant is the space that you are in when 

you listen. The sheer volume of the Sydney Opera House theatres has a profound effect on what music 

sounds like when you hear it there. The theatres of the are specifically designed with acoustic 

characteristics that have been carefully fine-tuned to affect the sonic experience we have when we 

enter them.  

 

One of the methods used by acoustic engineers is to use sensitive microphones and take recordings 

to analyse the effect of the space on the experience of listeners. One tool used to analyse these 

recordings is called a reflectogram, and a simplified example of one can be seen on the next page. 
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Reflectograms measure the amplitude, or volume, of sound over time. The vertical axis shows the 

volume (measured in decibels) of the recorded sound, while the horizontal axis shows the time 

(measured in seconds) for that sound to be picked up by the microphone. 

In the reflectogram above, a single loud sound has been played in the space, which is represented by 

the vertical bar at the left-most part of the graph. The other vertical bars represent echoes of that original 

sound which reflect off various surfaces within the space before arriving at the microphone. The diagram 

below shows one way this could occur.  
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Since the sound must travel further along the reflected path compared to the direct path, it takes longer 

to arrive at the microphone and is also lower in volume when it arrives. This is the reason that the 

vertical bars tend to decrease in height as we move further to the right in the reflectogram. 

Sound travels at varying speeds according to factors like temperature, humidity and air pressure. If we 

take the speed of sound in a particular space to be 331 metres per second, then answer the following 

questions: 

a) How long would it take for a sound to travel 100 metres? Provide your answer in seconds, 

accurate to 1 decimal place. 

b) The original sound in the reflectogram arrives after 0.12 seconds. How far must the sound 

source be from the microphone? Provide your answer in metres, accurate to 1 decimal place. 

c) There are noticeable spikes in the reflectogram after 0.126 seconds and 0.1455 seconds. How 

far must the sound have travelled to have produced these echoes? Provide your answer in 

metres, accurate to 1 decimal place. 

 

Melody and harmony 

This next activity makes use of the Desmos graphing calculator to dynamically explore the nature of 

musical notes. You can access it here: http://www.desmos.com/calculator 

 

Most of us enjoy music in some form, but we seldom think about why some musical notes sound 

harmonious together while others do not. To understand this part of musical theory, we need to 

recognise that sound is a vibration that travels through air, water, and other materials. Musical 

instruments make sound by vibrating the air within and around them in predictable ways. 

 

To see a visualisation of this, use an internet browser to open the Desmos graphing calculator. On the 

left-hand menu, type in “sin 𝑥” (no space is required between sin and 𝑥, but Desmos will add this in 

automatically). If you did it correctly, the following graph should appear: 

 

 
 

  



 
 

What you are seeing is a visual representation of a mathematical function called sine (“sin” is just an 

abbreviation, but it is still pronounced so it rhymes with “wine”). Its wavy geometry makes it perfectly 

suited to representing all kinds of natural phenomena that involve oscillation (such as electromagnetic 

radiation or rising and falling tides).  

 

The high sections of the sine wave are called crests, while the low sections are called troughs. If we 

take this sine wave to represent a simplified version of a musical note, then crests represent regions of 

the air at high pressure, while troughs represent regions at low pressure. The interaction between these 

crests and troughs is what our ears and brains perceive as sound. 

When the crests and troughs are bunched up more closely together, this represents a musical note at 

a higher pitch. Since the crests and troughs occur more frequently, we call this a higher frequency. 

Conversely, when the sound wave is at a lower frequency, this leads to a musical note at a lower pitch. 

Every musical note has its own specific frequency. For instance, on a piano, middle C has a frequency 

of approximately 262 Hertz – this means that its sound wave would have 262 crests (and therefore also 

262 troughs) in the space of a single second. 

 
 

 

Knowing about frequency is the key to understanding why some notes are harmonious while others are 

discordant. For instance, on the piano keyboard, the A note to the left of middle C (marked with an 

asterisk *) has a frequency of 220 Hz. Remember that it is lower because the notes become lower in 

pitch as we move to the left of the keyboard. If we were to create a note with double the frequency – 

440 Hz – it would match nicely with this A note. That is because the two notes represent an octave: the 

higher note is the A note on the right of middle C (marked with a tilde ~). 

We can see the mathematical relationship between these two notes back in Desmos. On the line 

underneath “sin 𝑥”, type in “sin 2𝑥”. You will notice a second graph appear atop the first one. Do you 

notice how every second wave of sin 2𝑥 lines up with each full wave of sin 𝑥? This mathematical 

phenomenon is what we experience sonically as harmony. 

The octave is not the only kind of harmony that we have heard before. Another common harmony is 

called the perfect fifth. The frequency of two notes in this harmony is in the ratio 2:3 – another way of 

saying this is that one note has a 50% higher frequency than the other. We can represent this visually 

by leaving the sin 2𝑥 graph alone but modifying the sin 𝑥 equation so that it reads sin 3𝑥. You can see 

Middle C = 262 Hz 

* ~ 



 
 

that every second wave of sin 2𝑥 matches up with every third wave of sin 3𝑥, which again is a 

harmonious relationship.  

Manipulating these sine waves also allows us to see why some notes sound discordant. If you have 

ever tried playing two adjacent notes on a piano keyboard, you will notice that they sound very 

unpleasant together. This is because the ratio between their frequencies is 15:16. You can visualise 

this by graphing sin 2𝑥 along with sin 1.875𝑥. The two graphs almost never line up perfectly (you will 

need to scroll further to the right or left in Desmos to see the first place that this actually occurs). 

  



 
 

Solutions 
 

a) Time = 0.3 seconds 
b) Distance = 39.7m 
c) First echo travels 41.7m, second echo travels 48.2 metres 

 

Graphs of sin 𝑥 and sin 2𝑥 (representing an octave)  

Note: the black circles below show places where the two graphs line up with each other. They have 
been added manually here and do not appear on the original Desmos graph. 

 
 
Graphs of sin 3𝑥 and sin 2𝑥 (representing an octave)  

Note: as above, black circles have been added manually here for illustrative purposes. 

 
  



 
 

Graphs of sin 1.875𝑥 and sin 2𝑥 (representing a semitone)  

 

 


